
-1-

Group Analysis with AFNI - Hands On

• The following sample group analysis comes from “How-to #5 -- Group
Analysis: AFNI 3dANOVA3”, described in full detail on the AFNI website:
http://afni.nimh.gov/pub/dist/HOWTO/howto/ht05_group/html

• The script has been modified, and is now generated by the afni_proc.py program.
Generate and execute the script. Discuss the experiment and original data as it runs.
 If necessary, the afni_proc.py command is in the file s1.afni_proc.command .

cd AFNI_data2
afni_proc.py -help | less

execute example #4 (via cut and paste) to generate the
'proc.ED.glt' script
execute the script according to the output recommendation

tcsh -x proc.ED.8.glt |& tee output.proc.ED.8.glt

• Allow the script to run in one terminal window, while viewing results in another.

-2-

• Brief description of experiment :
 Design: Rapid event-related

 stimulus or fixation presented randomly on a 1-second time grid
 There are 4 stimulus types:

Human MovieTool Movie Human Point LightTool Point Light

 Data Collected:
 1 Anatomical (SPGR) dataset for each subject

• 124 sagittal slices
 10 Time Series (EPI) datasets for each subject

• 23 axial slices x 138 volumes = 3174 slices per run
• TR = 2 sec; voxel dimensions = 3.75 x 3.75 x 5 mm

 Sample size, n=7 (subjects ED, EE, EF, FH, FK, FL, FN)

-3-

• Analysis Steps:
 Part I: Process data for each subject

 Pre-process subjects’ data ⇒ many steps involved here…
 Run deconvolution analysis on each subject’s dataset --- 3dDeconvolve

 Part II: Run group analysis
 warp results to standard space
 3-way Analysis of Variance (ANOVA) --- 3dANOVA3

• Object Type (2) x Animation Type (2) x Subjects (7) = 3-way ANOVA

• Class work for Part I:
 view the original data by running afni from the ED directory
 then view output data from the ED.8.glt.results directory

cd ED

afni &

-4-

• PART I ⇒ Process Data for each Subject First:
 Hands-on example: Subject ED
 We will begin with ED’s anat dataset and 10 time-series (3D+time) datasets:
EDspgr+orig, EDspgr+tlrc, ED_r01+orig, ED_r02+orig … ED_r10+orig

 Below is ED’s ED_r01+orig (3D+time) dataset. Notice the first two time
points of the time series have relatively high intensities*. We will need to
remove them later:

Timepoints 0
and 1 have high
intensity values

✽ Images obtained during the first 4-6 seconds of scanning will have much larger
intensities than images in the rest of the timeseries, when magnetization (and
therefore intensity) has decreased to its steady state value

-5-

• Pre-processing is done by the proc.ED.8.glt script within the directory,
AFNI_data2/ED.8.glt.results .
 go to the ED.8.glt.results directory to start viewing the results
 also, open the proc.ED.8.glt script in an editor (such as gedit), and

follow the script while viewing the results
 starting from the ED directory (from the previous slides)…

cd ..
gedit proc.ED.8.glt &
cd ED.8.glt.results
ls
afni &

 note that in the script, the count command is used to set the $runs variable
as a list of run indices:

• set runs = (`count -digits 2 1 10`)
becomes:

• set runs = (01 02 03 04 05 06 07 08 09 10)
 And so:

• foreach run ($runs)
becomes:

• foreach run (01 02 03 04 05 06 07 08 09 10)

-6-

• STEP 0 (tcat): Apply 3dTcat to copy datasets into the results directory,
while removing the first 2 TRs from each run.

 The first 2 TRs from each run occurred before the scanner reached a steady state.

3dTcat -prefix $output_dir/pb00.$subj.r01.tcat \
ED/ED_r01+orig'[2..$]'

 The output datasets are placed into $output_dir, which is the results directory.
 Using sub-brick selector '[2..$]' sub-bricks 0 and 1 will be skipped.

 The '$' character denotes the last sub-brick.
 The single quotes prevent the shell from interpreting the '[' and '$' characters.

 The output dataset name format is:

pb00.$subj.r01.tcat (.HEAD / .BRICK)

 pb00 : process block 00
 $subj : the subject ID (ED.8.glt, in this case)
 r01 : EPI data from run 1
 tcat : the name of this processing block (according to afni_proc.py)

 (other block names are tshift, volreg, blur, mask, scale, regress)

-7-

• STEP 1 (tshift): Check for possible “outliers” in each of the 10 time
series datasets using 3dToutcount . Then perform temporal alignment
using 3dTshift.

 An outlier is usually seen as an isolated spike in the data, which may be due to a
number of factors, such as subject head motion or scanner irregularities.

 The outlier is not a true signal that results from presentation of a stimulus event, but
rather, an artifact from something else -- it is noise.

foreach run (01 02 03 04 05 06 07 08 09 10)
 3dToutcount -automask pb00.$subj.r$run.tcat+orig \

 > outcount_r$run.1D
end

 How does this program work? For each time series, the trend and Mean Absolute
Deviation are calculated. Points far away from the trend are considered outliers.
 "far away" is defined as at least 5.43*MAD (for a time series of 136 TRs)

• see 3dToutcount -help for specifics
 -automask: do the outlier check only on voxels within the brain and ignore

background voxels (which are detected by the program because of their smaller
intensity values)

 > : redirect output to the text file outcount_r01.1D (for example), instead of
sending it to the terminal window.

-8-

 Subject ED’s outlier files:
outcount_r01.1D
outcount_r02.1D
 …

 outcount_r10.1D

 Use AFNI 1dplot to display any one of ED’s outlier files. For example:
1dplot outcount_r04.1D

Note: “1D” is used to identify a
numerical text file. In this case, each
file consists a column of 136 numbers
(b/c of 136 time points).

High intensity
values in the
beginning are
usually due to
scanner attempting
to reach steady
state.

Outliers? Inspect the data.

time

number of
‘outlier’ voxels,

per TR

-9-

 in afni, view run 04, time points 117, 118 and 119 (0-based)
 while it appears that something happened at time point 118 (such as a

swallow, or similar movement), it may not be enough to worry about
 if there had been a more significant problem, and if it could not be fixed by
3dvolreg, then it might be good to censor this time point via the -censor
option in 3dDeconvolve

internal movement can
be seen in this area,
using afni

-10-

• Next, perform temporal alignment using 3dTshift.
 Slices were acquired in an interleaved manner (slice 0, 2, 4, …, 1, 3, 5, …).
 Interpolate each voxel's time series onto a new time grid, as if each entire

volume had been acquired at the beginning of the TR.
 For example, slice #0 was acquired at times t = 0, 2, 4, etc., in seconds.

Slice #1 was acquired at times t = 1.043, 3.043, 5.043, etc.
 After applying 3dTshift, all slices will have offset times of t = 0, 2, 4, etc.

 3dTshift -tzero 0 -quintic \
 -prefix pb01.$subj.r$run.tshift \
 pb00.$subj.r$run.tcat+orig

 -tzero 0 : the offset for each slice is set to the beginning of the TR
 -quintic : interpolate using a 5th degree polynomial

-11-

 Subject ED’s newly created time shifted datasets:
 pb01.ED.8.glt.r01.tshift+orig (.HEAD/.BRIK)
 ...

 pb01.ED.8.glt.r10.tshift+orig (.HEAD/.BRIK)

 Below is run 01 of ED’s time shifted dataset.

Slice acquisition now
in synchrony with
beginning of TR

0

4

2

-12-

• STEP 2: Register the volumes in each 3D+time dataset using AFNI
program 3dvolreg. Register all volumes to the first of the session.

foreach run ($runs)
3dvolreg -verbose -zpad 1 \
 -base pb01.$subj.r01.tshift+orig'[0]' \
 -1Dfile dfile.r$run.1D \
 -prefix pb02.$subj.r$run.volreg \
 pb01.$subj.r$run.tshift+orig

end

cat dfile.r??.1D > dfile.rall.1D

 -verbose: prints out progress report onto screen
 -zpad : add one temporary zero slice on either end of volume
 -base : align to very first image, since anatomy was scanned before EPI
 -1Dfile : save motion parameters for each run (roll, pitch, yaw, dS, dL, dP)

 into a file containing 6 ASCII formatted columns
 -prefix : output dataset names reflect processing block 2, volreg
 input datasets are from processing block 1, tshift
 concatenate the registration parameters from all 10 runs into one file

-13-

 Subject ED’s 10 newly created volume registered datasets:
pb02.ED.8.glt.r01.volreg+orig (.HEAD/.BRIK)
 ...
pb02.ED.8.glt.r10.volreg+orig (.HEAD/.BRIK)

 Below is run 01 of ED’s volume registered datasets.

-14-

 view the registration parameters in the text file, dfile.rall.1D
 this is the concatenation of the registration files for all 10 runs

1dplot -volreg dfile.rall.1D

 very little movement is apparent - a good subject

-15-

• STEP 3: Apply a Gaussian filter to spatially blur the volumes using
program 3dmerge.

 result is somewhat cleaner, more contiguous activation blobs
 also helps account for subject variability when warping to standard space
 spatial blurring will be done on ED’s time shifted, volume registered datasets

foreach run ($runs)
 3dmerge -1blur_fwhm 4 -doall \
 -prefix pb03.$subj.r$run.blur \
 pb02.$subj.r$run.volreg+orig
end

 -1blur_fwhm 4: use a full width half max of 4mm for the filter size
 -doall : apply the editing option (in this case the Gaussian

 filter) to all sub-bricks in each dataset

-16-

Before blurring

After blurring

 results from 3dmerge:

pb02.ED.8.glt.r01.volreg+orig

pb03.ED.8.glt.r01.blur+orig

-17-

• STEP 3.5 (unnumbered block): creating a union mask

 use 3dAutomask to create a 'brain' mask for each run
 create a mask which is the union of the run masks
 this mask can be applied in various ways:

 during the scaling operation
 in 3dDeconvolve (so that time is not wasted on background voxels)
 to group data, in standard space

• may want to use the intersection of all subject masks

foreach run ($runs)
 3dAutomask -dilate 1 -prefix rm.mask_r$run \

 pb03.$subj.r$run.blur+orig
end

 -dilate 1 : dilate the mask by one voxel

-18-

 next, take the union of the run masks
 the mask datasets have values of 0 and 1
 can take union by computing the mean and comparing to 0.0

• other methods exist, but this is done in just two simple commands

3dMean -datum short -prefix rm.mean rm.mask*.HEAD
3dcalc -a rm.mean+orig -expr 'ispositive(a-0)' \
 -prefix full_mask.$subj

 -datum short : force full_mask to be of type short
 rm.* files : these files will be removed later in the script

 -a rm.mean+orig : specify the dataset used for any 'a' in '-expr'
 -expr 'ispositive(a-0)': evaluates to 1 whenever 'a' is positive

• note that the comparison to 0 can be changed
0.99 would create an intersection mask
0.49 would mean at least half of the masks are set

-19-

 so the result is dataset, full_mask.ED.8.glt+orig
 view this in afni

 load pb03.ED.8.glt.r01.blur+orig as the underlay
 load the mask dataset as the overlay
 set the color overlay opacity to 5

• allows the underlay to show through the overlay

color overlay
opacity arrows

-20-

• STEP 4: Scaling the Data - as percent of the mean

 for each run
 for each voxel

• compute the mean value of the time series
• scale the time series so that the new mean is 100

 scaling becomes an important issue when comparing data across subjects
 using only one scanner, shimming affects the magnetization differently for

each subject (and therefore affects the data differently for each subject)
 different scanners might produce vastly different EPI signal values

 without scaling, the magnitude of the beta weights may have meaning only when
compared with other beta weights
 What does a beta weight of 4.7 mean? Basically nothing, by itself.

• It is a small response, if many voxels have responses in the hundreds.
• It is a large response, if it is a percentage of the mean.

 by converting to percent change, we can compare the activation calibrated with
the relative change of signal, instead of the arbitrary baseline of FMRI signal

-21-

 For example:
Subject 1 - signal in hippocampus has a mean of 1000, and goes from
a baseline of 990 to a response at 1040

Difference = 50 MRI units

Subject 2 - signal in hippocampus has a mean of 500, and goes from a
baseline of 500 to a response at 525

Difference = 25 MRI units

 Conclusion: each shows a 5% change, relative to the mean.
 these changes are 5% above the baseline
 But 5% of what? It is 5% of the mean.

 Percent of baseline might be a slightly preferable scale (to percent of mean), but
it may not be worth the price.
 the difference is only a fraction of the result

• e.g. a 5% change from the mean would be approximately a 5.1% change
from the baseline, if the mean is 2% above the baseline

 computing the baseline accurately is confounded by using motion parameters
(but using motion parameters may be considered more important)

-22-

foreach run ($runs)
 3dTstat -prefix rm.mean_r$run pb03.$subj.r$run.blur+orig
 3dcalc -a pb03.$subj.r$run.blur_orig -b rm.mean_r$run+orig \
 -c full_mask.$subj+orig \
 -expr 'c * min(200, a/b*100)' \
 -prefix pb04.$subj.r$run.scale
end

 dataset a : the blurred EPI time series (for a single run)
 dataset b : a single sub-brick, where each voxel has the mean value for that run
 dataset c : the full mask

 -expr 'c * min(200, a/b*100)'
 compute a/b*100 (the EPI value 'a', as a percent of the mean 'b')
 if that value is greater than 200, use 200
 multiply by the mask value, which is 1 inside the mask, and 0 outside

-23-

 compare EPI graphs from before and after scaling
 they look identical, except for the scaling of the values
 note that the default scaling of 4 has been changed to 4.873
 the EPI run 01 mean at this voxel is 1462.17 (in the blur dataset)

right-click in the
center voxel of
the graph window

pb03.ED.glt.r01.blur+orig pb04.ED.glt.r01.scale+orig

-24-

 compare EPI images from before and after scaling
 the background voxels are all 0, because of applying the mask
 the scaled image looks like a mask, because all values are either 0,

or are close to 100

pb03.ED.glt.r01.blur+orig pb04.ED.glt.r01.scale+orig

-25-

• STEP 5: Perform a deconvolution analysis on Subject ED’s data with
 3dDeconvolve

 What is the difference between regular linear regression and deconvolution?
 With linear regression, the hemodynamic response is assumed.
 With deconvolution, the hemodynamic response is not assumed.

Instead, it is computed by 3dDeconvolve from the data.

 TENT(0,14,8) was chosen as the set of basis functions for each response
 the response is to be computed from 0 seconds after each stimulus, to

14 seconds after each stimulus
 8 TENT functions will be used, over 7 two-second intervals

• making each estimated response locked to the TR grid
• TENT #0 and TENT #7, at the interval endpoints, are half TENTs

-26-

• 3dDeconvolve command - Part 1

3dDeconvolve -input pb04.$subj.r??.scale+orig.HEAD \
 -polort 2 \
 -mask full_mask.$subj+orig \
 -basis_normall 1 \
 -num_stimts 10 \
-stim_times 1 stimuli/stim_times.01.1D 'TENT(0,14,8)' \
-stim_label 1 ToolMovie \
-stim_times 2 stimuli/stim_times.02.1D 'TENT(0,14,8)' \
-stim_label 2 HumanMovie \
-stim_times 3 stimuli/stim_times.03.1D 'TENT(0,14,8)' \
-stim_label 3 ToolPoint \
-stim_times 4 stimuli/stim_times.04.1D 'TENT(0,14,8)' \
-stim_label 4 HumanPoint \

 . . . continued on next page

 see input dataset list by typing: echo pb04.$subj.r??.scale+orig.HEAD
 use mask to avoid computation on zero-valued time series
 use -basis_normall to specify that all basis functions have a height of 1
 first 4 (of 10) stimuli are given using -stim_times

10 input datasets

-27-

• 3dDeconvolve command - Part 2

 -stim_file 5 dfile.all.1D’[0]’ -stim_base 5 \
 -stim_file 6 dfile.all.1D’[1]’ -stim_base 6 \
 -stim_file 7 dfile.all.1D’[2]’ -stim_base 7 \
 -stim_file 8 dfile.all.1D’[3]’ -stim_base 8 \
 -stim_file 9 dfile.all.1D’[4]’ -stim_base 9 \
 -stim_file 10 dfile.all.1D’[5]’ -stim_base 10 \
 -iresp 1 iresp_ToolMovie.$subj \
 -iresp 2 iresp_HumanMovie.$subj \
 -iresp 3 iresp_ToolPoint.$subj \
 -iresp 4 iresp_HumanPoint.$subj \

 . . . continued on next page

 recall that dfile.all.1D contains 6 columns of registration parameters
 roll, pitch, yaw, dS, dL, dP

 excluding reminder labels, such as '-stim_label 5 roll'
 applying '-stim_base' excludes them from the full F-stats, like the baseline
 output an impulse response time series, from the 8 TENT functions

 see the iresp files by typing the command: ls iresp*

-28-

• 3dDeconvolve command - Part 3 (end of command)

 -gltsym ../misc_files/glt1.txt -glt_label 1 FullF \
 -gltsym ../misc_files/glt2.txt -glt_label 2 HvsT \
 -gltsym ../misc_files/glt3.txt -glt_label 3 MvsP \
 -gltsym ../misc_files/glt4.txt -glt_label 4 HMvsHP \
 -gltsym ../misc_files/glt5.txt -glt_label 5 TMvsTP \
 -gltsym ../misc_files/glt6.txt -glt_label 6 HPvsTP \
 -gltsym ../misc_files/glt7.txt -glt_label 7 HMvsTM \
 -fout -tout -full_first -x1D Xmat.1D \
 -fitts fitts.$subj \
 -bucket stats.$subj

 to view a symbolic general linear test (such as #4), try the command:
 cat ../misc_files/glt4.txt

 output F and t-stats for each test
 output the full-F sub-brick first (as sub-brick #0 in dataset stats.ED.8.glt+orig)
 output the X matrix in a 1D text file, Xmat.1D
 output the time series of the model fit in fitts.ED.8.glt+orig
 output all beta weights, glts and statistics on them into on them into one bucket

dataset, stats.ED.8.glt+orig

-29-

 -iresp 1 iresp_ToolMove.ED.8.glt
 -iresp 2 iresp_Human_Movie.ED.8.glt
 -iresp 3 iresp_ToolPoint.ED.8.glt
 -iresp 4 iresp_HumanPoint.ED.8.glt

 these output files contain the estimated Impulse Response Function for
each stimulus type

 the percent signal change is shown at each time point
 below is the estimated IRF for Subject ED’s “Human Movies” (HM) condition:

UnderLay: iresp_Human_Movie
OverLay: stats (Full F-stat)
Voxel: Jump to (ijk) : 18 44 12

-30-

• After running 3dDeconvolve, an 'all_runs' dataset is created by concatenating the 10
scaled EPI time series datasets, using program 3dTcat.

3dTcat -prefix all_runs.$subj pb04.$subj.r??.scale+orig.HEAD

 we can use the Double Plot graph feature to plot the all_runs dataset, along
with the fitts dataset, in the same graph window
 this shows how well we have modeled the data, at a given voxel location

• the fit time series is the sum of each regressor (X matrix column) times its
corresponding beta weight

• the fit time series is the same as the input time series, minus the error
 note that different locations in the brain respond better to some stimulus

classes than others, generally, so the fit time series may overlap better after
one type of stimulus than after another

 voxel 18, 44, 12 has the largest F-stat in the dataset

-31-

 usually, plot the all_runs dataset along with the fitts dataset
 however, 10 runs is too much, so plot run 01 with the fitts

 set the Underlay to pb04.ED.8.glt.run01.scale+orig
 in an image window, 'Jump to (ijk)' -> 18 44 12
 open a Graph window with one graph (m), and autoscale (a)
 in the Graph window, Opt -> Tran 1D -> Dataset #N
 in the Dataset #N plugin, choose dataset fitts, and choose color dk-blue
 in the Graph window, Opt -> Double Plot -> Overlay

for a fast event related design, this is a nice fit

-32-

• It is the iresp data that will be used in the group analysis.
 Focusing on voxel 18, 44, 12 of dataset iresp_Human_Movie, we can see

that the IRF is 8 TRs long (0-7), as specified by TENT(0,14,8).
 To run ANOVA, only one data point can exist at each voxel.

 so the percent signal change values for the 8 TRs will be averaged
 In the voxel displayed below, the mean percent signal change = 1.642%

note the peak

note the average

-33-

• STEP 6: Compute a voxel-by-voxel mean percent signal change
with 3dTstat.

 The following 3dTstat commands will compute a voxel-by-voxel mean for
each iresp dataset, of which we have four: ToolMovie, HumanMovie,
ToolPoint, HumanPoint.
 Note that this is not part of the proc.ED.8.glt script.

3dTstat -prefix ED_TM_irf_mean iresp_ToolMovie.ED.8.glt+orig
3dTstat -prefix ED_HM_irf_mean iresp_HumanMovie.ED.8.glt+orig
3dTstat -prefix ED_TP_irf_mean iresp_ToolPoint.ED.8.glt+orig
3dTstat -prefix ED_HP_irf_mean iresp_HumanPoint.ED.8.glt+orig

-34-

• STEP 9: Warp the mean IRF datasets for each subject to Talairach space,
by applying the transformation in the anatomical datasets with adwarp.

 For statistical comparisons made across subjects, all datasets -- including
functional overlays -- should be standardized (e.g., Talairach format) to control
for variability in brain shape and size

foreach cond (TM HM TP HP)
adwarp -apar EDspgr+tlrc -dxyz 3 \

-dpar ED_{$cond}_irf_mean+orig \
end

 The output of adwarp will be four Talairach transformed IRF datasets.
ED_TM_irf_mean+tlrc ED_HM_irf_mean+tlrc
ED_TP_irf_mean+tlrc ED_HP_irf_mean+tlrc

• We are now done with Part 1, Process Individual Subjects’ Data, for Subject ED
 go back and follow the same steps for remaining subjects

• We can now move on to Part 2, RUN GROUP ANALYSIS (ANOVA)

-35-

• PART 2 ⇒ Run Group Analysis (ANOVA3):
 In our sample experiment, we have 3 factors (or Independent Variables) for our

analysis of variance: “Stimulus Condition” and “Subjects”

 IV 1: OBJECT TYPE ⇒ 2 levels
Tools (T)
Humans (H)

 IV 2: ANIMATION TYPE ⇒ 2 levels
Movies (M)
Point-light displays (P)

 IV 3: SUBJECTS ⇒ 7 levels (note: this is a small sample size!)
Subjects ED, EE, EF, FH, FK, FL, FN

 The mean IRF datasets from each subject will be needed for the ANOVA. Example:
ED_TM_irf_mean+tlrc EE_TM_irf_mean+tlrc EF_TM_irf_mean+tlrc
ED_HM_irf_mean+tlrc EE_HM_irf_mean+tlrc EF_HM_irf_mean+tlrc
ED_TP_irf_mean+tlrc EE_TP_irf_mean+tlrc EF_TP_irf_mean+tlrc
ED_HP_irf_mean+tlrc EE_HP_irf_mean+tlrc EF_HP_irf_mean+tlrc

-36-

Continued on
next page…

irf datasets,
created for
each subj
with
3dDeconvolve
(See p.26)

IV A: Object
IV B: Animation

IV C: Subjects

• 3dANOVA3 Command - Part 1

 3dANOVA3 -type 4 \

-alevels 2 \

-blevels 2 \

-clevels 7 \

-dset 1 1 1 ED_TM_irf_mean+tlrc \

-dset 2 1 1 ED_HM_irf_mean+tlrc \

-dset 1 2 1 ED_TP_irf_mean+tlrc \

-dset 2 2 1 ED_HP_irf_mean+tlrc \

-dset 1 1 2 EE_TM_irf_mean+tlrc \

-dset 2 1 2 EE_HM_irf_mean+tlrc \

-dset 1 2 2 EE_TP_irf_mean+tlrc \

-dset 2 2 2 EE_HP_irf_mean+tlrc \

-dset 1 1 3 EF_TM_irf_mean+tlrc \

-dset 2 1 3 EF_HM_irf_mean+tlrc \

-dset 1 2 3 EF_TP_irf_mean+tlrc \

-dset 2 2 3 EF_HP_irf_mean+tlrc \

IV’s A & B are fixed, C is random.
See 3dANOVA3 -help

-37-

• 3dANOVA3 Command - Part 2

-dset 1 1 4 FH_TM_irf_mean+tlrc \

-dset 2 1 4 FH_HM_irf_mean+tlrc \

-dset 1 2 4 FH_TP_irf_mean+tlrc \

-dset 2 2 4 FH_HP_irf_mean+tlrc \

-dset 1 1 5 FK_TM_irf_mean+tlrc \

-dset 2 1 5 FK_HM_irf_mean+tlrc \

-dset 1 2 5 FK_TP_irf_mean+tlrc \

-dset 2 2 5 FK_HP_irf_mean+tlrc \

-dset 1 1 6 FL_TM_irf_mean+tlrc \

-dset 2 1 6 FL_HM_irf_mean+tlrc \

-dset 1 2 6 FL_TP_irf_mean+tlrc \

-dset 2 2 6 FL_HP_irf_mean+tlrc \

-dset 1 1 7 FN_TM_irf_mean+tlrc \

-dset 2 1 7 FN_HM_irf_mean+tlrc \

-dset 1 2 7 FN_TP_irf_mean+tlrc \

-dset 2 2 7 FN_HP_irf_mean+tlrc \ Continued on
next page…

more
irf
datasets

-38-

• 3dANOVA3 Command - Part 3

-fa ObjEffect \

-fb AnimEffect \

-adiff 1 2 TvsH \

-bdiff 1 2 MvsP \

-acontr 1 -1 sameas.TvsH \

-bcontr 1 -1 sameas.MvsP \

-aBcontr 1 -1: 1 TMvsHM \

-aBcontr -1 1: 2 HPvsTP \

-Abcontr 1: 1 -1 TMvsTP \

-Abcontr 2: 1 -1 HMvsHP \

-bucket AvgAnova

End of
ANOVA
command

Produces main effect for factor ‘a’
(Object type), i.e., which voxels
show increases in % signal change
that is significantly different from
zero?

Main effect for factor
‘b’, (Animation type)

All F-tests, t-tests,
etc will go into this
dataset bucket

These are
contrasts
(t-tests).
Explained
on pp 38-39

-39-

 -adiff: Performs contrasts between levels of factor ‘a’ (or -bdiff for factor
‘b’, -cdiff for factor ‘c’, etc), with no collapsing across levels of factor ‘a’.

E.g.1, Factor “Object Type” --> 2 levels: (1)Tools, (2)Humans:
-adiff 1 2 TvsH

E.g., 2, Factor “Faces” --> 3 levels: (1)Happy, (2)Sad, (3)Neutral
-adiff 1 2 HvsS

-adiff 2 3 SvsN

-adiff 1 3 HvsN

 -acontr: Estimates contrasts among levels of factor ‘a’ (or -bcontr for factor
‘b’, -ccontr for factor ‘c’, etc). Allows for collapsing across levels of factor ‘a’
 In our example, since we only have 2 levels for both factors ‘a’ and ‘b’, the
-diff and -contr options can be used interchangeably. Their different
usages can only be demonstrated with a factor that has 3 or more levels:

 E.g.: factor ‘a’ = FACES --> 3 levels :(1) Happy, (2) Sad, (3) Neutral
-acontr -1 .5 .5 HvsSN

-acontr .5 .5 -1 HSvsN

-acontr .5 -1 .5 HNvsS

Simple paired t-tests, no
collapsing across levels,
like Happy vs. Sad/Neutral

Happy vs. Sad/Neutral
Happy/Sad vs. Neutral

Happy/Neutral vs. Sad

-40-

 -aBcontr: 2nd order contrast. Performs comparison between 2 levels of factor
‘a’ at a Fixed level of factor ‘B’
 E.g. factor ‘a’ --> Tools(1) vs. Humans(-1),

 factor ‘B’ --> Movies(1) vs. Points(2)
• We want to compare ‘Tools Movies’ vs. ‘Human Movies’. Ignore ‘Points’

-aBcontr 1 -1 : 1 TMvsHM

• We want to compare “Tool Points’ vs. ‘Human Points’. Ignore ‘Movies’
-aBcontr 1 -1 : 2 TPvsHP

 -Abcontr: 2nd order contrast. Performs comparison between 2 levels of factor
‘b’ at a Fixed level of factor ‘A’
 E.g., E.g.factor ‘b’ --> Movies(1) vs. Points(-1),

 factor ‘A’ --> Tools(1) vs. Humans(2)
• We want to compare ‘Tools Movies’ vs. ‘Tool Points’. Ignore ‘Humans

-Abcontr 1 : 1 -1 TMvsTP

• We want to compare “Human Movies vs. ‘Human Points’. Ignore ‘Tools’
-Abcontr 2 : 1 -1 HMvsHP

-41-

 In class -- Let’s run the ANOVA together:

 cd AFNI_data2
• This directory contains a script called s3.anova.ht05 that will run
3dANOVA3

• This script can be viewed with a text editor, like emacs
 ./s3.anova.ht05

• execute the ANOVA script from the command line
 cd group_data ; ls

• result from ANOVA script is a bucket dataset AvgANOVA+tlrc,
stored in the group_data/ directory

 afni &

• launch AFNI to view the results

 The output from 3dANOVA3 is bucket dataset AvgANOVA+tlrc, which
contains 20 sub-bricks of data:

• i.e., main effect F-tests for factors A and B, 1st order contrasts, and
2nd order contrasts

-42-

 -fa: Produces a main effect for factor ‘a’
• In this example, -fa determines which voxels show a percent signal

change that is significantly different from zero when any level of
factor “Object Type” is presented

• -fa ObjEffect:

Activated areas
respond to OBJECTS
in general (i.e.,
humans and/or tools)

ULay: sample_anat+tlrc
OLay: AvgANOVA+tlrc

-43-

 Brain areas corresponding to “Tools” (reds) vs. “Humans” (blues)
 -diff 1 2 TvsH (or -acontr 1 -1 TvsH)

Red blobs show
statistically significant
percent signal changes
in response to “Tools.”
Blue blobs show
significant percent
signal changes in
response to “Humans”
displays

ULay: sample_anat+tlrc
OLay: AvgANOVA+tlrc

-44-

 Brain areas corresponding to “Human Movies” (reds) vs. “Humans Points” (blues)
 -Abcontr 2: 1 -1 HMvsHP

Red blobs show
statistically significant
percent signal changes
in response to “Human
Movies.” Blue blobs
show significant percent
signal changes in
response to “Human
Points” displays

ULay: sample_anat+tlrc
OLay: AvgANOVA+tlrc

-45-

• Many thanks to Mike Beauchamp for donating the data used in this lecture
and in the how-to#5

• For a full review of the experiment described in this lecture, see
Beauchamp, M.S., Lee, K.E., Haxby, J.V., & Martin,
A. (2003). FMRI responses to video and point-light
displays of moving humans and manipulable objects.
Journal of Cognitive Neuroscience, 15:7, 991-1001.

• For more information on AFNI ANOVA programs, visit the web page of
Gang Chen, our wise and infinitely patient statistician:

http//afni.nimh.gov/sscc/gangc

